Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Glob Antimicrob Resist ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2286429

ABSTRACT

The emergence of SARS-CoV-2 in 2019 led to a severe pandemic situation. Treatment options are limited and the efficacy of vaccines decreases due to mutations in SARS-CoV-2 strains. Therefore, new treatment options are urgently needed, and computational compound screenings are used to predict drugs quickly. One of these screenings revealed farnesyltransferase inhibitors (FTIs) as potential candidates. We demonstrated that the FTIs lonafarnib and tipifarnib have an impact on SARS-CoV-2 Wildtype and the Delta variant. Both FTIs dose-dependently reduced morphological changes and the formation of cytopathic effects in SARS-CoV-2 infected Calu-3 cells.

2.
Viruses ; 15(1)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2200873

ABSTRACT

The adenovirus vector platform remains one of the most efficient toolboxes for generation of transfer vehicles used in gene therapy and virotherapy to treat tumors, as well as vaccines to protect from infectious diseases. The adenovirus genome and capsids can be modified using highly efficient techniques, and vectors can be produced at high titers, which facilitates their rapid adaptation to current needs and disease applications. Over recent years, the adenovirus vector platform has been in the center of attention for vaccine development against the ongoing coronavirus SARS-CoV-2/COVID-19 pandemic. The worldwide deployment of these vaccines has greatly deepened the knowledge on virus-host interactions and highlighted the need to further improve the effectiveness and safety not only of adenovirus-based vaccines but also of gene therapy and oncolytic virotherapy vectors. Based on the current evidence, we discuss here how adenoviral vectors can be further improved by intelligent molecular design. This review covers the full spectrum of state-of-the-art strategies to avoid vector-induced side effects ranging from the vectorization of non-canonical adenovirus types to novel genome engineering techniques.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , Pandemics , COVID-19/prevention & control , SARS-CoV-2/genetics , Adenoviridae/genetics , Genetic Vectors/genetics
3.
Eur J Med Res ; 27(1): 255, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2139417

ABSTRACT

BACKGROUND: The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS: Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS: The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION: The existence of certain HLA haplotypes is associated with more severe disease.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , HLA-DQ Antigens/genetics , Prognosis , RNA, Viral , SARS-CoV-2 , HLA-DRB1 Chains
4.
J Virol ; 96(22): e0113322, 2022 11 23.
Article in English | MEDLINE | ID: covidwho-2108209

ABSTRACT

Human adenoviruses (HAdVs) are important tools for vector development for applications such as immunization, oncolytic therapy, or gene therapy. However, their potential is limited by preexisting immunity against HAdV; therefore, it is important for future vector design to identify HAdV types of low seroprevalence. To provide such data, we performed an analysis of both binding and neutralizing antibodies in sera from three student cohorts. Among these young adults, we found the highest levels of binding antibodies against HAdV-C1, -D33, -A31, -B35, -C5, -D26, -E4, and -B7. The highest levels of neutralizing antibodies were detected against HAdV-C2, -B3, -C1, -F41, -G52, -C5, -A31, -E4, and -C6. While binding and neutralizing antibody levels were not different in males and females or in samples collected before and after the cold season, we found significantly lower levels of binding antibodies in sera collected 20 months after the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, indicating a waning of HAdV-specific antibody responses on that time scale. Our data indicate that mainly HAdV types of species A, B, and D show low seroprevalence with regard to both binding and neutralizing antibodies and may represent good candidates for further characterization and future development as novel vector systems. IMPORTANCE Vectors based on human adenoviruses (HAdVs) are important for the development of novel immunizations, oncolytic therapies, and gene therapies. The use of HAdV-based vaccines against Ebola virus, the rapid adaptation of the vector technology for vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their very good efficacy have shown the great potential of HAdV-based vaccines. Preexisting immunity against HAdV-based vectors can limit their efficacy significantly; therefore, it is highly desirable to identify HAdV types with low seroprevalence. The identification of new suitable HAdV types for vector development will broaden the repertoire and contribute to future epidemic preparedness.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Male , Young Adult , Female , Humans , Adenoviruses, Human/genetics , Antibodies, Neutralizing , SARS-CoV-2 , Pandemics , Prevalence , Seroepidemiologic Studies , COVID-19/epidemiology , Students
5.
Virol J ; 19(1): 76, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1817229

ABSTRACT

BACKGROUND: During the ongoing Covid-19 pandemic caused by the emerging virus SARS-CoV-2, research in the field of coronaviruses has expanded tremendously. The genome of SARS-CoV-2 has rapidly acquired numerous mutations, giving rise to several Variants of Concern (VOCs) with altered epidemiological, immunological, and pathogenic properties. METHODS: As cell culture models are important tools to study viruses, we investigated replication kinetics and infectivity of SARS-CoV-2 in the African Green Monkey-derived Vero E6 kidney cell line and the two human cell lines Caco-2, a colon epithelial carcinoma cell line, and the airway epithelial carcinoma cell line Calu-3. We assessed viral RNA copy numbers and infectivity of viral particles in cell culture supernatants at different time points ranging from 2 to 96 h post-infection. RESULTS: We here describe a systematic comparison of growth kinetics of the five SARS-CoV-2 VOCs Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, and Omicron/B.1.1.529 and a non-VOC/B.1.1 strain on three different cell lines to provide profound information on the differential behaviour of VOCs in different cell lines for researchers worldwide. We show distinct differences in viral replication kinetics of the SARS-CoV-2 non-VOC and five VOCs on the three cell culture models Vero E6, Caco-2, and Calu-3. CONCLUSION: This is the first systematic comparison of all SARS-CoV-2 VOCs on three different cell culture models. This data provides support for researchers worldwide in their experimental design for work on SARS-CoV-2. It is recommended to perform virus isolation and propagation on Vero E6 while infection studies or drug screening and antibody-based assays should rather be conducted on the human cell lines Caco-2 and Calu-3.


Subject(s)
COVID-19 , Carcinoma , Caco-2 Cells , Cell Culture Techniques , Chlorocebus aethiops , Humans , Kinetics , Pandemics , SARS-CoV-2/genetics
6.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1744919

ABSTRACT

Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.


Subject(s)
Asthma , Bronchitis , Enterovirus Infections , Enterovirus , Picornaviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Asthma/epidemiology , Biomarkers , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Rhinovirus
7.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1742339

ABSTRACT

To develop adenoviral cell- or tissue-specific gene delivery, understanding of the infection mechanisms of adenoviruses is crucial. Several adenoviral attachment proteins such as CD46, CAR and sialic acid have been identified and studied. However, most receptor studies were performed on non-human cells. Combining our reporter gene-tagged adenovirus library with an in vitro human gene knockout model, we performed a systematic analysis of receptor usage comparing different adenoviruses side-by-side. The CRISPR/Cas9 system was used to knockout CD46 and CAR in the human lung epithelial carcinoma cell line A549. Knockout cells were infected with 22 luciferase-expressing adenoviruses derived from adenovirus species B, C, D and E. HAdV-B16, -B21 and -B50 from species B1 as well as HAdV-B34 and -B35 were found to be CD46-dependent. HAdV-C5 and HAdV-E4 from species E were found to be CAR-dependent. Regarding cell entry of HAdV-B3 and -B14 and all species D viruses, both CAR and CD46 play a role, and here, other receptors or attachment structures may also be important since transductions were reduced but not completely inhibited. The established human knockout cell model enables the identification of the most applicable adenovirus types for gene therapy and to further understand adenovirus infection biology.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Communication , Cell Line , Gene Library , Humans
8.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430892

ABSTRACT

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , Magnesium Chloride/pharmacology , Acyclovir/pharmacology , Adenoviruses, Human/drug effects , Adenoviruses, Human/physiology , Animals , Antiviral Agents/chemistry , CHO Cells , Cell Line, Tumor , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Fibroblasts , Heparin/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Humans , Magnesium Chloride/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Primary Cell Culture , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Structure-Activity Relationship , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
10.
Eur J Med Res ; 26(1): 107, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1412355

ABSTRACT

BACKGROUND: COVID-19, the pandemic disease caused by infection with SARS-CoV-2, may take highly variable clinical courses, ranging from symptom-free and pauci-symptomatic to fatal disease. The goal of the current study was to assess the association of COVID-19 clinical courses controlled by patients' adaptive immune responses without progression to severe disease with patients' Human Leukocyte Antigen (HLA) genetics, AB0 blood group antigens, and the presence or absence of near-loss-of-function delta 32 deletion mutant of the C-C chemokine receptor type 5 (CCR5). PATIENT AND METHODS: An exploratory observational study including 157 adult COVID-19 convalescent patients was performed with a median follow-up of 250 days. The impact of different HLA genotypes, AB0 blood group antigens, and the CCR5 mutant CD195 were investigated for their role in the clinical course of COVID-19. In addition, this study addressed levels of severity and morbidity of COVID-19. The association of the immunogenetic background parameters were further related to patients' humoral antiviral immune response patterns by longitudinal observation. RESULTS: Univariate HLA analyses identified putatively protective HLA alleles (HLA class II DRB1*01:01 and HLA class I B*35:01, with a trend for DRB1*03:01). They were associated with reduced durations of disease instead decreased (rather than increased) total anti-S IgG levels. They had a higher virus neutralizing capacity compared to non-carriers. Conversely, analyses also identified HLA alleles (HLA class II DQB1*03:02 und HLA class I B*15:01) not associated with such benefit in the patient cohort of this study. Hierarchical testing by Cox regression analyses confirmed the significance of the protective effect of the HLA alleles identified (when assessed in composite) in terms of disease duration, whereas AB0 blood group antigen heterozygosity was found to be significantly associated with disease severity (rather than duration) in our cohort. A suggestive association of a heterozygous CCR5 delta 32 mutation status with prolonged disease duration was implied by univariate analyses but could not be confirmed by hierarchical multivariate testing. CONCLUSION: The current study shows that the presence of HLA class II DRB1*01:01 and HLA class I B*35:01 is of even stronger association with reduced disease duration in mild and moderate COVID-19 than age or any other potential risk factor assessed. Prospective studies in larger patient populations also including novel SARS-CoV-2 variants will be required to assess the impact of HLA genetics on the capacity of mounting protective vaccination responses in the future.


Subject(s)
ABO Blood-Group System/genetics , COVID-19/etiology , HLA Antigens/genetics , Receptors, CCR5/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , Female , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin G/blood , Male , Middle Aged , Morbidity , Mutation , Severity of Illness Index
11.
Eur J Med Res ; 26(1): 87, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1344125

ABSTRACT

BACKGROUND: COVID-19 infection is a major threat to patients and health care providers around the world. One solution is the vaccination against SARS-CoV-2. METHODS: We performed a comprehensive query of the latest publications on the prevention of viral infections including the recent vaccination program and its side effects. RESULTS: The situation is evolving rapidly and there is no reasonable alternative to population-scale vaccination programs as currently enrolled. CONCLUSION: Therefore, regulatory authorities should consider supplementing their conventional mandate of post-approval pharmacovigilance, which is based on the collection, assessment, and regulatory response to emerging safety findings.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Informed Consent/standards , Pharmacovigilance , SARS-CoV-2/immunology , Vaccination/standards , COVID-19/immunology , COVID-19/virology , Disclosure , Humans
12.
Children (Basel) ; 8(7)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1323135

ABSTRACT

The importance of adenovirus (Ad) research is significantly increasing with respect to virotherapy for vaccine development, tumor, and gene therapy. Due to the different species and subtypes of this virus, the characterization of the biological significance of especially rare Ad is necessary. Previously, rare Ad types 70, 73, and 74 were originally isolated from fecal samples of immunocompromised patients and they represent recombinants of other Ad types. Here we investigated transduction experiments of these reporter gene tagged Ad types in primary cells exemplified by subject-derived primary nasal epithelial cells (NAEPCs). To analyze the transduction rates, we performed flow cytometry, quantitative polymerase chain reaction (PCR), and cytokine analyses 25 h post-infection. We found that, in contrast to Ad type 5 (as a positive control), the transduction rates of NAEPCs with Ad types 70, 73, and 74 were interestingly low. The major Ad receptor (coxsackievirus-adenovirus receptor and CD46) expression levels showed no significant change after infection with Ad types 70, 73 and 74. Moreover, Interleukin 6 (IL-6) was not released after in vitro Ad transduction. Due to the high risk of developing life-threatening complications in immunocompromised patients by these human species D Ads, even more attention needs to be investigated into the development of diagnostic and therapeutic concepts to prevent and treat those opportunistic infections in susceptible patients.

SELECTION OF CITATIONS
SEARCH DETAIL